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Abstract. Dynamical systems can have both symmetries and time-reversing symmetries.
Together these two types of symmetries form a group called the reversing symmetry groupR
with the symmetries forming a normal subgroupS of R. We give a complete characterization
of R (and henceS) in the dynamical systems associated with the groups of integral matrices
Gl(2,Z) andPGl(2,Z). To do this, we use well known methods of number theory, such as
Dirichlet’s unit theorem for quadratic fields and Gauß’ results on the equivalence of integer
quadratic forms, and employ the algebraic structure of the modular groupPSl(2,Z) as a free
product. We show how some recently discussed generalizations of the reversing symmetry group
are also nicely illustrated when we consider affine extensions of these matrix groups. Our results
are applicable to hyperbolic toral automorphisms (Anosov orcat maps), pseudo-Anosov maps,
and the group of three-dimensional (3D) trace maps that preserve the Fricke–Vogt invariant.

0. Introduction

Symmetry is a much studied concept in both group theory and dynamical systems. This
paper combines algebraic and group theoretic notions with those of dynamical systems, in a
spirit similar to several recent papers [3, 16, 18, 19, 25, 26], in order to classify symmetries
and reversing symmetries of two important classes of dynamical systems.

In the context of group theory, we will be interested in finding those elementsS of
a groupG which conjugate a given elementF into itself (and hence commute with it),
and those elementsR which conjugateF into its inverse. The set of elementsS is well
known in group theory as thecentralizerof F (in G), and is always non-empty because it
at least containsF and its powers (includingF 0 = Id). It is interesting to know whether
it contains other elements. On the other hand, the existence ofanyR which makesF and
F−1 conjugate is not obvious and depends on the particular choice ofF .

The application of these group-theoretic structures to dynamical systems is our main
concern. If we think now ofF , S andR as automorphisms of some topological space of
some manifold to itself, thenS is called asymmetryof F , andR a reversing symmetry
(because it relatesF to its time-reversed versionF−1). Symmetries of dynamical systems
have been studied for quite some time. Since they form a groupS(F ), group theory has
helped in obtaining and understanding results. Time-reversing symmetries have received
much less attention, although symmetries and time-reversing symmetries of a givenF may
be investigated systematically [16], as together they form the so-calledreversing symmetry
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group R(F ), with the symmetriesS(F ) as a normal subgroup. Knowledge ofR and
its structure helps to understand the dynamics (as summarized, for instance, in its phase
portrait), see [17–19, 27] for a detailed discussion.

The purpose of this paper is to show that the possible structure ofR(F ) is completely
resolvable when we confineF , S andR to the groupsGl(2,Z) andPGl(2,Z). These groups
(or their index-2 subgroups of elements of positive determinant) are much studied and feature
in many contexts. For example,Gl(2,Z) is well known as the group of two-dimensional
(2D) toral automorphisms or, in crystallography, as the group of lattice automorphisms
in 2D, whereasPSl(2,Z) (the well known modular group) is isomorphic to the group
of biholomorphic transformations of the Riemann sphere. Much is also known about the
structure ofGl(2,Z), PGl(2,Z) and their subgroups. For example,PSl(2,Z) is known to
be thefree productof a cyclic group of order 2 with one of order 3, a property that will
prove useful in our analysis.

On the other hand,Gl(2,Z) and PGl(2,Z) and their subgroups are associated with
important classes of dynamical systems. The maps induced on the torus by the elements
of Gl(2,Z) are the toral automorphisms. The hyperbolic ones out of the latter are chaotic
on the entire torus, with the orientation-preserving ones being the only structurally-stable
symplectic maps of the torus. The most famous example is the ‘cat map’ of Arnold and
Avez [1], induced by

M =
(

1 1
1 2

)
. (1)

Hyperbolic toral automorphisms, orcat mapsas we more loosely call them, have received
much attention as chaotic, yet solvable, systems [9, 22]

The setPGl(2,Z) arises naturally in the group theory context as the quotient ofGl(2,Z)
by its centre. In geometric terms, the quotient of the 2-torus by the reflection in the origin
(x 7→ −x) produces the 2-sphere with four punctures. Consequently, each element of
PGl(2,Z) induces a mapping of this sphere to itself. In particular, the hyperbolic elements
of PGl(2,Z) induce chaotic automorphisms of the punctured sphere, which are examples
of pseudo-Anosovmappings [5, 20].

Our interest inPGl(2,Z) also arises in another way. This group is isomorphic to the
groupG of 3D invertible polynomialtrace mapswhich preserve the Fricke–Vogt invariant

I (x, y, z) = x2+ y2+ z2− 2xyz − 1 (2)

and fix the point(1, 1, 1). Such mappings arise very naturally in physics from applications
of transfer matrix techniques to phenomena displaying non-periodicity in space or time, e.g.
cf [2, 23, 25, 30] and references therein. The canonical example is the Fibonacci trace map
F1 : (x, y, z) 7→ (y, z,2yz−x) which, via the above-mentioned isomorphism between these

polynomial mappings andPGl(2,Z), can be associated with the matrixR1 = ±
[

0 1
1 1

]
.

We see that the structure of the reversing symmetry group of, for example,F1 within the
groupG of polynomial mappings is simply a manifestation of that ofR1 in PGl(2,Z).

In view of the many applications, we found it remarkable that the groupsGl(2,Z) and
PGl(2,Z) appear to have enough structure to allow a calculation of the reversing symmetry
groupR within them, while at the same time the hyperbolic elements of these groups lead
to non-trivial and interesting dynamical systems on compact manifolds, including the ones
on the torus and the punctured sphere†.

† Up to now, most of the study of symmetries and reversing symmetries of automorphisms of 2D surfaces has
been confined to automorphisms of the plane.
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Searching for (reversing) symmetries inside a group also means to restrict them to a
certain (natural) set. Though this might be necessary in one application, it might be too
restrictive in another. For example, a linear mapping of the plane which is volume and
orientation preserving (i.e. represented by anSl(2,Z) matrix) is conjugate both to itself
(trivial) and to its inverse (obvious from its Jordan normal form). However, when we
restrict ourselves to homeomorphisms of the torus induced byGl(2,Z) matrices, we need
to look for homeomorphisms of the torus that can act as (reversing) symmetries. One
important result forhyperbolicelements ofGl(2,Z) follows from lemma 4 of [12]:

Lemma 1. Suppose two hyperbolic toral automorphisms (i.e. two hyperbolic elements of
Gl(2,Z)) are conjugate to one another via a homeomorphism of the torus. Then this
homeomorphism corresponds to the action of an element ofGl(2,Z), or to the affine
extension (with a rational translation) of such an element.

Furthermore, it is easy to show that an affine mapping of this type can only be
a (reversing) symmetry if its linear part already is one itself (cf section 4 below).
Consequently, for hyperbolic toral automorphisms, the existence of (reversing) symmetries
amounts to searching essentially only inGl(2,Z) (this is not so for other toral
automorphisms, e.g. the finite-order ones). It turns out that the consideration ofaffine
transformations as (reversing) symmetries is also of independent interest. This is because
it gives rise to the possibility that a power of a mappingF possesses additional (reversing)
symmetries, a question that has attracted some attention recently [18, 19].

Let us, at this point, briefly describe how the paper is organized. After some
preliminaries in section 1, we first discuss the case ofGl(2,Z) in section 2. Here, we
focus more on symmetries than on reversing symmetries, and employ some standard results
from algebraic number theory to derive a complete classification. Then, in section 3
on PGl(2,Z), we emphasize reversing symmetries and use the free product structure of
PSl(2,Z) to get everything as explicit as possible. This way we actually obtain a rather
complete picture for both cases. While we proceed, we keep an open eye on (reversing)
symmetries of powers of a given matrix which we can also completely classify. In section 4,
we discuss the extension to affine symmetries and reversing symmetries, where we also re-
derive (as a by-product) the set of polynomial mappings of 3-space that leaveI (x, y, z) of
equation (2) invariant. This is followed by some concluding remarks.

1. Preliminaries

1.1. Symmetries and reversing symmetries

We have to introduce the concept of symmetry and reversing symmetry. Consider some
(topological) space�, its automorphism group Aut(�) and an elementF ∈ Aut(�) which,
by definition, is invertible. Then, the group

S(F ):= {G ∈ Aut(�)|G ◦ F = F ◦G} (3)

is called thesymmetry groupof F in Aut(�). In group theory, it is called thecentralizer
of F in Aut(�). This group certainly contains all powers ofF , but often more.

Quite frequently one is also interested inR ∈ Aut(�) that conjugateF into its inverse,

R ◦ F ◦ R−1 = F−1. (4)

SuchR is called areversing symmetryof F , and when such anR exists, we callF reversible.
We will, in general, not use different symbols for symmetries and reversing symmetries from
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now on, because together they form a group [16],

R(F ) := {G ∈ Aut(�)|G ◦ F ◦G−1 = F±1} (5)

the so-calledreversing symmetry groupof F . It is a subgroup of thenormalizerof 〈〈F 〉〉
(the group generated byF ) in Aut(�).

There are two possibilities: eitherR(F ) = S(F ) (if F is an involution or if it has no
reversing symmetry) orR(F ) is aC2-extension (the cyclic group of order 2) ofS(F ) which
means thatS(F ) is a normal subgroup ofR(F ) and

R(F )/S(F ) ' C2. (6)

The underlying algebraic structure has fairly strong consequences. One is that reversing
symmetries cannot be of odd order [16], another one is

Lemma 2. If F (with F 2 6= Id) has an involutory reversing symmetryR, the reversing
symmetry group ofF is a semi-direct product†:

R(F ) = S(F )×sC2.

Proof. Certainly, {Id, R} ' C2 is a subgroup ofR(F ), and S(F ) ∩ C2 = {Id} by
assumption. As the representation ofanyT ∈ R(F ) in the formT = G◦H with G ∈ S(F )
(the normal subgroup) andH ∈ C2 is unique, the statement follows. �

We can say more about the structure ofR(F ) if we restrict the possibilities forS(F ),
e.g. if we assume thatS(F ) ' C∞ or S(F ) ' C∞ × C2 with theC2 being a subgroup of
the centre of Aut(�). This situation will appear frequently below.

1.2. (Reversing) symmetries of powers of a mapping

In what follows, we summarize some of the concepts and results of [18] and, in particular,
[17]. It may happen that some power ofF has more symmetries thanF itself (we
shall see examples later on), i.e.S(F k) (for somek > 1) is larger thanS(F ) which is
contained as a subgroup. The analogous possibility exists forR(F k) versusR(F ). If such
a situation occurs, we say thatF possesses additionalk-symmetries, respectively reversing
k-symmetries. Let us make this a little more precise.

It is trivial that mappingsF of finite order (withFk = Id say) possess the entire group
Aut(�) ask-symmetry group. To analyse the structure a bit further, let us therefore restrict
to mappingsF ∈ Aut(�) of infinite order. Let us introduce

S∞(F ):=
∞⋃
k=1

S(F k) (7)

which is clearly a subgroup of Aut(�). Let us also introduce the automorphism induced by
F

φF (G):= F ◦G ◦ F−1. (8)

One can then easily see thatG ∈ S∞(F ) if and only if φnF (G) = G for somen ∈ N. Now,
we actually want to know the minimal such ordern, wherefore we introduce

#F (G):= min{n ∈ N|φnF (G) = G} (9)

which is finite onS∞(F ) and infinite otherwise. Consequently, we have

S∞(F ) = {G ∈ Aut(�)|#F (G) <∞}. (10)

† We useN ×sH for the semi-direct product of two groupsN andH , with N being the normal subgroup.



Reversing symmetry group ofGl(2,Z) andPGl(2,Z) matrices 1553

Of course, it can happen that #F (G) ≡ 1 onS∞(F ) which means that no power ofF has
additional symmetries. On the other hand, #F (G) = k might be larger than one in which
case we callG a genuine or truek-symmetry.G is a true† k-symmetry ofF if and only
if the iterates ofG underφF generate a properk-cycle. It will be part of our classification
later on to determineS∞ and #F for an interesting class of examples.

Quite similarly, one defines reversingk-symmetries and their orbit structure, but we
will not expand on that here.

2. Matrices in Gl(2,Z) and toral automorphisms

Toral automorphisms, in particular hyperbolic ones (cat maps), play an important role in
the theory of dynamical systems, especially in connection with symbolic dynamics [9].
The toral automorphisms of the 2-torusT = R2/Z2 can be described as the unimodular
2× 2-matrices with integer coefficients which form the groupGl(2,Z).

2.1. Symmetries

It is certainly an interesting and important question to know, for a givenM, its symmetries,
i.e. the set of mappings that commute with it—where one has to specify a class of mappings
to consider. So, determining the symmetries of a mapping means to find its centralizer
inside some ‘natural’ set. In the setting of toral automorphisms, one very obvious choice
is the entire set of them, i.e.Gl(2,Z). The centralizer is then a group, and we have, for
M ∈ Gl(2,Z),

SGl(2,Z)(M) = centGl(2,Z)(M) = {G ∈ Gl(2,Z)|MG = GM}. (11)

This is precisely what we want to determine now. To be more precise, we are only interested
in the structure of the symmetry group as this is invariant under conjugation, i.e. if we know
it for an elementM, we also know it for any other element of the formPMP−1 because

S(PMP−1) = PS(M)P−1 (12)

where we have suppressed the indexGl(2,Z) because it will not change until the end of
this section.

When we work along the various possibilities, we shall encounter two principal
situations. A givenM determines its characteristic polynomial which is monic and has only
integer coefficients, so its roots are algebraic integers. Furthermore, it is eitherreducible
overZ (which happens if and only if the eigenvalues ofM are elements of{1,−1}) or it
is irreducible. In the latter case we know thatM is diagonalizable (overC) and its two
eigenvalues are different. This simplifies the problem considerably, as we will see from the
next lemma, while the reducible case has to be treated separately and explicitly. Now, for
the irreducible case we formulate

Lemma 3. Let M ∈ Gl(2,Z) have a characteristic polynomialP(x) that is irreducible
overZ, and letλ be a root ofP(x). Then the centralizer ofM in Gl(2,Z) is isomorphic
with a subgroup of the group of units in the maximal order of the quadratic fieldQ(λ).

† Although the distinction between true and otherk-symmetries is necessary in general, we shall usually drop the
attribute ‘true’ whenever misunderstandings are unlikely.
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Proof. It is clear that irreducibility ofP(x) implies thatM must have two different
eigenvalues,λ and det(M)/λ in fact. We then know that diagonalization can be performed
not only inC but also inQ(λ) because this is the quadratic field generated byλ and we
can solve the linear equations for the eigenvectors withinQ(λ) (see chapter XIV of [15]
for details), i.e. there is a matrixU with elements inQ(λ) such that

U M U−1 = diag(λ, det(M)/λ). (13)

Now, only diagonal matrices can commute with a diagonal matrix with pairwise different
diagonal elements. To find the centralizer ofM, we have to determine all other matrices
A ∈ Gl(2,Z) which are also diagonalized byU . But if α is an eigenvalue ofA, it must
be an element ofQ(λ). SinceA is an integer matrix,α is an algebraic integer, hence an
element ofO, the maximal order ofQ(λ) (O is the intersection ofQ(λ) with the set of
algebraic integers). Finally, asA has determinant±1, α must be aunit in O. Though the
group property of matrices commuting withM is obvious, we do not know whetherall
units appear this way. So, we only know that the centralizer is isomorphic with a subgroup
of the unit group ofO which was the statement. �

It is clear that the centralizer is isomorphic with the entire unit group ifλ itself (or its
conjugate) is a fundamental unit (i.e. a generator of the unit group). This happens for the
finite-order elements with irreducibleP(x), as we shall see.

Now, we will proceed in three steps, discussing the situation for elements of finite-order
(elliptic case), for elements with non-trivial Jordan normal form (paraboliccase), and finally
for all other elements of infinite order (hyperboliccase), and then summarize the findings
in theorem 1.

2.1.1. Elements of finite order (elliptic case).It is a well known fact that any element of
finite order inGl(2,Z) can only have order 1, 2, 3, 4 or 6—the proof is the same as that
for the crystallographic restriction in 2D [28]. Finite order forM ∈ Gl(2,Z) means thatM
has its eigenvalues on the unit circle, but asM is real and has determinant±1, they must
be complex conjugates of one another with their product being the determinant. But since
tr(M) ∈ Z, we have only finitely many possibilities, namely those mentioned.

Now, to start with the trivial cases:{± 1l} is the centre ofGl(2,Z), i.e.M = ± 1l are
the only matrices inGl(2,Z) to commute with every element of the group, so we have

S(±1l) = Gl(2,Z). (14)

Here,−1l is an involution, but a trivial one. There are more elements of second order,
namely thoseM with eigenvalues 1 and−1. The Cayley–Hamilton theorem [15] for 2× 2
matrices tells us that this happens if and only if tr(M) = 0 and det(M) = −1:

M2 = tr(M) ·M − det(M) · 1l (15)

from which one can derive the statement. (The other solutions ofM2 = 1l, with different
eigenvalues of course, areM = ±1l given above.) As the characteristic polynomial in this
case is reducible, we cannot apply lemma 3 and have to treat it explicitly. The involutions
under consideration thus have the form

M =
(
a b

c −a
)

with a2+ bc = 1. (16)

Such matrices commute with±M and with± 1l , but with nothing else, as is easy to check
explicitly. To proceed, we take advantage of the following.
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Lemma 4. There are precisely two conjugacy classes ofGl(2,Z)-matricesM with tr(M) =
0 and det(M) = −1. They are faithfully represented by the two involutions(

1 0
0 −1

)
and

(
0 1
1 0

)
. (17)

Proof. It is easy to check that these two matrices must be in different conjugacy classes
of Gl(2,Z). So we have to show that they are sufficient. From lemma 5.5 on p 166 of
[10] we know thatany involutionM ∈ Gl(2,Z) with negative determinant is conjugate to

either

(
1 0
0 −1

)
or

(
1 0
1 −1

)
. The second matrix in turn is conjugate to

(
0 1
1 0

)
which

completes the proof. �

For the non-trivial involutionsM2 = 1l 6= ±M we thus have

S(M) = {±M,±1l} ' C2× C2 (18)

where here and in the following we use the symbolCn for the cyclic group of ordern and
× for the direct product of groups. We shall write groups multiplicatively throughout even
though most of them will be Abelian.

Because it is closely related, let us next consider the case of matricesM of fourth order.
Again, we are interested in those cases where no smaller power ofM gives 1l as we have
treated those already. So, we must have aprimitive fourth root of unity and its complex
conjugate as eigenvalues, which means±i. So, M is truly of fourth order if and only if
tr(M) = 0 and det(M) = 1. Such matrices have the form

M =
(
a b

c −a
)

with a2+ bc = −1 (19)

and (again!) commute with±M and±1l . Can we have more? The characteristic polynomial
is irreducible overZ, so we know from lemma 3 above that we have an isomorphism with
a subgroup of the unit group ofZ[i], the maximal order inQ(i). This unit group is known
to be {1, i,−1,−i} ' C4 [7], which we have already exhausted wherefore we cannot find
further symmetries. The difference to the previous case is that, asM2 = −1l , the four
elements form a group isomorphic withC4 (rather thanC2× C2) and we obtain

S(M) = {±M,±1l} ' C4. (20)

Next, consider elements of third order, i.e.M3 = 1l, butM 6= 1l. So, we need a primitive
third root of unity and its complex conjugate as eigenvalues which is unique:(−1± i

√
3)/2.

Consequently, we must have tr(M) = −1 and det(M) = 1, and the matrices are of the form

M =
(
a − 1 b

c −a
)

with a(a − 1)+ bc = −1. (21)

They commute with 1l,M,M2, but also with−1l,−M,−M2, hence

S(M) = {±1l,±M,±M2} ' C2× C3 ' C6. (22)

In fact, this symmetry group can be generated by−M2 which happens to be a root ofM
in Gl(2,Z). That there are no more elements can again be derived from lemma 3, as the
characterisic polynomial is irreducible, the quadratic field isQ(e2π i/3) with maximal order
Z[%] where% = e2π i/6 (!) and the unit group [7] is{1, %, %2, . . . , %5} ' C6.

Finally, the genuine order 6 case has to exclude order 2 and 3 (both treated already),
so we need a complex conjugate pair of primitive sixth roots of unity here—which again
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is unique: (1± i
√

3)/2. So, we must have tr(M) = 1 and det(M) = 1 (henceM3 = −1l),
and matrices of the form

M =
(
a + 1 b

c −a
)

with a(a + 1)+ bc = −1. (23)

Certainly, they commute withM and its powers, but with nothing else—wherefore we here
obtain the answer

S(M) = {±1l,±M,±M2} ' C6. (24)

The reason is as in the previous case, because we have to deal withQ(e2π i/6) which
coincides withQ(e2π i/3). Consequently, we have the same maximal order,Z[%], with unit
group isomorphic toC6.

At this point, the discussion of elements of finite order is complete. An alternative
derivation of the results could use a faithful set of representatives of the various conjugacy
classes, which is given in table 1 (it is possible to determine the number of conjugacy
classes, see theorem 2 below, and to calculate suitable representatives).

2.1.2. Parabolic elements.Since| tr(M)| > 2 is sufficient for hyperbolicity, we have here
to consider the cases with tr(M) = ±2 and det(M) = 1, i.e. both eigenvalues being 1 or
−1, but excludingthe casesM = ±1l which are of finite order. (The remaining case with
det(M) = −1 and tr(M) = ±1 is also hyperbolic and therefore treated in the next section.)

The only possibilities to be considered are thus

M = ±
(

1− a b

−c 1+ a
)

wherea2 = bc. (25)

One way to proceed is to find a good set of representatives of the conjugacy classes in
Gl(2,Z) with det= 1 and tr= ±2. To this end, we define (form ∈ Z)

Tm:=
(

1 m

0 1

)
(26)

which certainly is of that type. It is easy to check that any suchTm is conjugate to its
transpose:Tm ∼ (Tm)t , and also thatTm ∼ Tn if and only if m = ±n.

Furthermore:

Lemma 5. The conjugacy classes ofGl(2,Z) matrices with tr(M) = 2 and det(M) = 1
are faithfully represented by the matricesTm of equation (26) withm ∈ N0. Out of those,
only T0 = 1l is of finite order.

Proof. The last statement of the lemma is obvious. Also, a matrixM ∈ Gl(2,Z) with
tr(M) = 2 and det(M) = 1 must have the form (25). Here, we can further assume that
a 6= 0 and hencebc 6= 0, becausea = 0 brings us back to the case ofTm or its transpose
which has been discussed already. Consider now the equation(

α β

γ δ

)(
1 m

0 1

)(
α β

γ δ

)−1

=
(

1−mαγ1 mα21

−mγ 21 1+mαγ1
)

(27)

where1 = αδ−βγ = ±1. Let us now compare (25), with positive sign, and the right-hand
side of (27). Writeb = r2b0 and c = s2c0, r, s > 0, with b0 and c0 square-free (i.e. not
divisible by any square except 1). Butbc = a2 then impliesb0 = c0. Let t = gcd(r, s) and
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definer ′, s ′ throughr = tr ′ ands = ts ′ where now gcd(r ′, s ′) = 1. We then have to show
the solvability of the set of equations

mαγ1 = a mα21 = t2(r ′)2b0 mγ 21 = t2(s ′)2b0.

To achieve this, choose1 = sgn(b0), α = r ′, γ = sgn(ab0) · s ′ andm = t2|b0| =
gcd(b, c). But then we clearly solve the second and third equation and also have
mαγ1 = sgn(ab0) · t2|b0|r ′s ′ · sgn(b0) = sgn(a) · √|bc| = a. Finally, since gcd(α, γ ) = 1,
we can always findβ, δ ∈ Z so thatαδ − βγ = 1 = sgn(b0). As, on the other hand, the
matricesTm with m ∈ N0 are pairwise inequivalent, the assertion follows. �

We have treated the case tr(M) = 2 here, but the rest is trivial:

Corollary 1. The conjugacy classes with tr= −2 and det= 1 are faithfully represented
by the matrices−Tm with m ∈ N0.

Proof. Observe tr(−M) = −tr(M) but det(−M) = det(M). Since−1l commutes with all
matrices, the statement follows from the previous lemma. �

There is a reason why we called these special representing matricesTm: they are a 2D
representation of the 1D translation group,Z, which is Abelian. In particular,

Tm · Tn = Tm+n (28)

and thus alsoTm = (T1)
m. This also impliesT−m = (Tm)−1. Now, it is easy to check that

Tm (m 6= 0) commutes only with the powers ofT1 and with their negatives—i.e. precisely
with all matrices{±Tk|k ∈ Z} ' C2× Z ' C2× C∞.

Finally, we get the result for the symmetry group of any parabolicM (M 6= ±1l) as

S(M) ' C2× Z (29)

where the infinite cyclic group is always generated byT1 or one of its conjugates, i.e. in
general by a root ofM in Gl(2,Z).

2.1.3. Elements of infinite order: hyperbolic case.One case with|tr(M)| < 2 did not
appear above: tr(M) = ±1 with det(M) = −1. This gives eigenvalues±(τ,−1/τ) with
τ = (1 + √5)/2 the golden ratio, so theseM are hyperbolic. Furthermore, we have
to discuss the case|tr(M)| > 2 where both eigenvalues ofM must be real and, due to
|det(M)| = 1, one,λ say, must lie strictly outside the interval [−1, 1] and the other strictly
inside. Consequently, the larger eigenvalue is a Pisot–Vijayaraghavan number [6].

To solve the question for the symmetry group here, we may employ Dirichlet’s unit
theorem. It is clear thatλ is a quadratic irrational and real, and its algebraic conjugate (the
other solution of the characteristic polynomial) is different from it. So, from lemma 3 we
know that the centralizer must be a subgroup of the unit group of the maximal order in
Q(λ). Here, we have a quadratic field withreal irrationality, so we know from Dirichlet’s
unit theorem [7] that the unit group is{±uk|k ∈ Z} ' C2× Z, whereu is the fundamental
unit, andC2 = {±1} is the unit group ofZ. In particular,M corresponds to some power of
u, um say, but need not have anmth root insideGl(2,Z). However,M certainly commutes
with ±Mn for any n ∈ Z. So we have theC2 part of the unit group. On the other hand,
any non-trivial subgroup ofZ ' C∞ is isomorphic withC∞ again!

So, for any hyperbolic toral automorphismM we now know that its symmetry group is
given by

S(M) ' C2× Z. (30)
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Now, there is still the question for the proper generator of the infinite cyclic group. As
already mentioned, this need not be a matrix that corresponds to the fundamental unit, but
can be some power of it—and this has to be calculated for each specialM. This can be done
for each givenM in finitely many steps because there is a finite algorithm to determine the
fundamental rootu, see [4], and the eigenvalues ofM correspond (up to a sign) to powers
of u.

2.1.4. Symmetries summarized.Let us summarize our findings in the following theorem.

Theorem 1. The structure of the centralizer of an elementM ∈ Gl(2,Z) (i.e. the structure
of the symmetry groupS(M) ⊂ Gl(2,Z)) has precisely one of the following forms:

(1) S(M) = Gl(2,Z) if and only if M = ±1l;
(2) S(M) = {±1l,±M} ' C2 × C2 if and only if tr(M) = 0 and det(M) = −1 (i.e.

M2 = 1l 6= ±M);
(3) S(M) = {±1l,±M} ' C4 if and only if tr(M) = 0 and det(M) = 1 (i.e.

M4 = −M2 = 1l);
(4) S(M) = {±1l,±M,±M2} ' C6 if and only if tr(M) = ±1 and det(M) = 1 (i.e.

M6 = 1l 6= M2); or
(5) S(M) ' C2× C∞ if and only if M is not of finite order.

2.2. Reversing symmetries

Now, for various reasons (some mentioned in the introduction) one is not only interested in
the symmetries of a mappingM, but also in its so-calledreversing symmetries, i.e. in such
mappingsG that conjugateM into its inverse

GMG−1 = M−1. (31)

All such elements, together with the symmetries ofM, form the so-called reversing
symmetry group ofM, abbreviated asR(M). It contains the symmetry groupS(M) as a
normal subgroup. There are precisely two possibilities: eitherR(M) = S(M) orR(M) is a
group extension ofS(M) of index 2. We will meet both cases later. The property of being
reversible is again an invariant of the conjugacy classes, and a matrixM is reversible if and
only if the class represented byM is ambivalent, i.e. contains the inverses of its members.

Let us consider this for the case ofGl(2,Z)-matrices. For invertible 2×2 matrices one
has a simple relation between the trace of a matrix and that of its inverse

tr(M−1) = det(M) · tr(M) (32)

which has the rather strong consequence that we can exclude all matricesM with
det(M) = −1 and tr(M) 6= 0 from any further discussion in this section: they cannot
be reversible because reversibility (31) would imply thesametrace forM andM−1, but
from (32) we know that they have different sign. On the other hand, we can only escape
this argument through tr(M) = 0 which then meansM2 = ± 1l if det(M) = ∓1. We have
thus settled

Lemma 6. A matrix M ∈ Gl(2,Z) with tr(M) 6= 0 and det(M) = −1 is not reversible.
The only reversible orientation-reversing matrices inGl(2,Z) are involutions. In both cases
R(M) = S(M).

On the other hand,M = ±1l and any involutionM2 = 1l is trivially reversible, as
M = M−1, again withR(M) = S(M). It will now be our task to find out the situation for
the other elements. To this end, the following result from [29] will be helpful
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Theorem 2. Let M ∈ Gl(2,Z) be a matrix with a characteristic polynomialP(x) that
is irreducible overZ. Let λ be a root ofP . Then the number of conjugacy classes of
Gl(2,Z)-matricesA for which P(A) = 0 is finite and equals the number of ideal classes
in the ringZ[λ].

This is a specialization of theorem 5 in [29] where one can also find the proof. We only
remark that it is rather natural to relate to this result since the investigation of the equivalence
of two given matrices (unless in trivial cases) reduces more or less automatically to the
question of the representability of certain numbers by a quadratic form—and hence to the
class number of its discriminant. There are two class numbers frequently found in the
literature, one corresponding toGl(2,Z) conjugacy (which is what we need here, see [4]
for a table), and another one corresponding toSl(2,Z) conjugacy—so some care is needed
when looking them up.

2.2.1. Elements of finite order and parabolic case.We know the answer already for all
involutions. Let us, therefore, continue with the elements of (true) order 3,4,6. In all three
cases, we have the situation of theorem 2, and in all three cases we have class number
1—which means one conjugacy class each. As the inverse elements have the same order
here, the classes must contain them, and thus the elements of order 3,4,6 must be conjugate
to their inverses withinGl(2,Z), hence reversible. There are many different ways to look
at this result. Here, we just use the fact and refer to table 1 for a choice of representatives.
The additional reversing symmetries enlarge the cyclic groupsC4 andC6 to the dihedral
groupsD4 andD6, respectively.

Also the case of parabolic matrices is easy to settle, as we know the answer already.
The matricesTm of equation (26) are our representatives of the conjugacy classes, and we
know that(Tm)−1 = T−m from equation (28). But we know also thatTm ∼ T−m, explicitly

diag(1,−1) · Tm · diag(1,−1) = T−m. (33)

So, the matricesTm are reversible, with an involution that isnot in their symmetry group,
and we thus get (by lemma 5) for any parabolicM (M 6= ±1l):

R(M) = S(M)×sC2 ' (C2× Z)×sC2 ' C2×D∞. (34)

We now have to consider the hyperbolic matricesM with det(M) = 1.

2.2.2. Hyperbolic elements.To begin with one result: it isnot true that all hyperbolic
elementsM with det(M) = 1 are reversible, and this is related to the class number problem
again. In cases where the ringZ[λ] has class number one, we know from theorem 2 without
any further work that there is also only one conjugacy class of matrices with eigenvalueλ,
hence these matrices are conjugate to their inverses and thus reversible. This is so because
M−1 leads to the ringZ[λ−1] which is identical withZ[λ], sinceλ is a unit.

A nice general result, particularly relevant to the hyperbolic elements, is the nature of
the possible reversing symmetries. If we considerM ∈ Gl(2,Z) (M 6= ±1l), the equation
GMG−1 = M−1 for a reversing symmetryG ∈ Gl(2,Z) directly leads to

Lemma 7. Let M,G ∈ Gl(2,Z), M 6= ±1l. If G is a reversing symmetry ofM, it is of
finite order, namelyG4 = 1l .

Proof. If tr(M) = 0, M itself is an involution or an element of fourth order, and the
statement follows, e.g., from direct calculation with the representatives of table 1. If
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tr(M) 6= 0, we must have det(M) = 1 from lemma 6. If now the two diagonal entries ofM
are not equal, we immediately get tr(G) = 0 from the matrix equationGMG−1 = M−1 and
hence the statement. If finally the two diagonal entries ofM are equal, not both off-diagonal
elements can vanish, and we get again tr(G) = 0. �

Let us briefly comment on this. Clearly, the search for reversing symmetries is
considerably simplified if we only have to search among involutions and anti-involutions
(G2 = −1l). From our previous classification we know that given a reversing symmetryG,
all other reversing symmetries are obtained asHG with H 6= ±1l a symmetry ofM, and
eitherH = ±Mk for somek or at least some power ofH has this form. In both cases,
HG is again an involution or an anti-involution, because of lemma 7. This entire structure
is particularly helpful if we switch from the matrix picture to the algebraic picture where
we approachGl(2,Z) through generators and reformulate reversibility in terms of the word
problem. We shall come back to this a little later. Let us illustrate the situation here with
two examples.

Example 1. The canonical cat map (1) has the order 4 reversing symmetry

(
0 −1
1 0

)
, as

well as the involutory reversing symmetry

(
1 0
1 −1

)
.

Example 2. The hyperbolic elementM =
(

4 9
7 16

)
has no reversing symmetry in

Gl(2,Z). Note that tr(M) = 20. This is the minimum value of|tr(M)| for M a hyperbolic
element ofSl(2,Z) for which irreversibility inGl(2,Z) occurs.

Let us also remark here that a hyperbolic elementM of Sl(2,Z) has a reversing
symmetryG ∈ Gl(2,Z) if and only if the corresponding element ofPSl(2,Z) has a
reversing symmetry inPGl(2,Z). This will be discussed in section 3.1, where we also
give algorithms to decidein finitely many stepsreversibility of elements ofPSl(2,Z) in
PGl(2,Z). For the moment, we just distinguish between the two possibilities, reversible
and irreversible. We note, with respect to the latter possibility and example 2 above, that
it follows from lemma 1 and the remarks following it that irreversibility of a hyperbolic
Gl(2,Z) element withinGl(2,Z) finally implies irreversibility within the (much larger)
group of homeomorphisms of the torus. Since the hyperbolic toral automorphisms are
structurally stable, example 1 (respectively example 2) show that irreversibility (respectively
reversibility) are non-generic properties amongC1 area-preserving toral diffeomorphisms,
see [24] for details.

2.2.3. Reversing symmetries summarized.Let us summarize our findings in the following
theorem.

Theorem 3. The structure of the reversing symmetry groupR(M) ⊂ Gl(2,Z) of a matrix
M ∈ Gl(2,Z) has precisely one of the following forms:

(1) R(M) = Gl(2,Z) if and only if M = ±1l;
(2) R(M) ' D2 if and only if tr(M) = 0 and det(M) = −1 (i.e.M2 = 1l 6= ±M);
(3) R(M) ' D4 if and only if tr(M) = 0 and det(M) = 1 (i.e.M4 = −M2 = 1l);
(4) R(M) ' D6 if and only if tr(M) = ±1 and det(M) = 1 (i.e.M6 = 1l 6= M2);
(5) R(M) ' D∞ × C2 if and only if M is of infinite order and possesses a reversing

symmetry of order 2;
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(6) R(M) ' C∞ ×s C4 if and only if M is of infinite order and possesses a reversing
symmetry of order 4, but none of order 2; or

(7) R(M) ' C∞ × C2 if and only if M is of infinite order but irreversible.

Here,Dn ' Cn ×sC2 is the dihedral group. Let us add a comment on the structure of the
reversing symmetry group in case (6) of the last theorem. It may look a bit astonishing
thatR can still be written as a semi-direct product (cf lemma 2), but the reason for it is
that the fourth-order reversing symmetryG fulfils G2 = −1l , so by absorbing theC2-part
of the symmetry groupS we can find a subgroup ofR isomorphic toC4 that conjugates
theC∞-part into itself but has only the unit matrix in common with it.

2.3. Extension to (reversing)k-symmetries

Above, we have classified the possible symmetry and reversing symmetry groups. As
explained in the introduction, powers of a matrixM could, in principle, have additional
(reversing) symmetries, and we now want to know whether that situation really occurs. As
we shall show, it is impossible withinGl(2,Z) in most cases, the only non-trivial cases
being orientation-reversing irreversible matrices with a reversible square (the square root of
M of equation (1) withinGl(2,Z) is an example of this).

2.3.1. Elliptic and parabolic cases.Clearly, an elliptic elementM is of finite order,
wherefore we certainly encounter the trivial case of (reversing)k-symmetries: whenever
Mk = ±1l, we getS(Mk) = R(Mk) = Gl(2,Z). Apart from that, no other (reversing)
k-symmetries occur for elements of finite order as can easily be checked, e.g. from table 1.

Parabolic elements in turn are conjugate to±Tm for somem ∈ N. However, since
(Tm)

k = Tkm andS(T`) = S(T1) for all ` ∈ N, we cannot havek-symmetries other than
symmetries. FromR(T`) = R(T1) we see that the same holds for the reversing symmetries.
We have thus established

Proposition 1. Elliptic elementsM of Gl(2,Z) do not possess any true (reversing)k-
symmetries unlessMk = ±1l where the (reversing) symmetries add up to the entire group
Gl(2,Z). Parabolic elements do not possess any true (reversing)k-symmetries at all for
k > 1.

2.3.2. Hyperbolic elements.From theorem 1, it is clear that hyperbolic elements cannot
havek-symmetries fork > 1 because the generator of theC∞-part ofS(M) is the ‘maximal’
root ofM in Gl(2,Z), soS(Mk) = S(M) for all k ∈ N. Similarly, if M is reversible, no
power of it can have additional reversing symmetries which follows from theorems 1 and 3:
an additional reversing symmetry would also imply an additional symmetry which cannot
exist.

The situation is different, however, ifM has det(M) = −1 (and tr(M) 6= 0). Such an
M cannot be reversible as explained earlier, but its square can.

Example 3. The matrixM =
(

0 1
1 1

)
is orientation-reversing with tr(M) 6= 0 and thus

irreversible. Its square, however, is the cat map of equation (1) and reversible, see example 1
above. This is a case of a true reversing 2-symmetry.

Can we have other situations? For the answer, we need the following.
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Table 1. Representatives of all elliptic and parabolic conjugacy classes.

tr det(M) order M S(M) R(M)

2 1 1 1l Gl(2,Z) Gl(2,Z)
−2 1 1 −1l Gl(2,Z) Gl(2,Z)

0 −1 2

(
1 0
0 −1

)
(C2 × C2) (C2 × C2)(

0 1
1 0

)

0 1 4

(
0 −1
1 0

)
C4 D4

−1 1 3

(
0 −1
1 −1

)
C6 D6

1 1 6

(
0 −1
1 1

)
C6 D6

2 1 ∞
(

1 m

0 1

)
C2 × C∞ C2 ×D∞

m ∈ N

−2 1 ∞
(−1 −m

0 −1

)
C2 × C∞ C2 ×D∞

m ∈ N

Lemma 8. Let A,B ∈ Sl(2,Z) be of infinite order. If tr(A) = tr(B) andAn = Bn for
somen > 1, thenA = B.

Proof. Let x = tr(A)/2 = tr(B)/2. Infinite order inSl(2,Z) then means|x| > 1. By
induction, one obtains [2] from the Cayley–Hamilton theorem that

An = Un−1(x) · A− Un−2(x) · 1l
Bn = Un−1(x) · B − Un−2(x) · 1l

where theUm(y) denote Chebyshev’s polynomials of the second kind†. Then,An = Bn if
and only ifUn−1(x) · (A− B) = 0. But all roots of Chebyshev’s polynomials are real and
strictly inside the interval [−1, 1], soUn−1(x) 6= 0 and we must haveA = B. �

This indeed helps, as we can now show.

Lemma 9. Let M ∈ Sl(2,Z) be of infinite order with tr(M) 6= 0. If M is irreversible, the
same is true of all powersMk with k 6= 0. What is more,G is a reversing symmetry ofM
if and only if it is one ofMk.

Proof. To prove the first assertion, let us assume the contrary, i.e.Mk reversible (k 6= 0),
butM itself not. This means there is aG ∈ Gl(2,Z) with

(M−1)k = M−k = GMkG−1 = (GMG−1)k.

So, from the first and the last expression, we have twoSl(2,Z)-matrices,M−1 andGMG−1,
both of infinite order, with the samekth power and the same trace. By the previous lemma,
they must be equal andM itself is reversible—a contradiction.

† They are defined byU−1 ≡ 0, U0 ≡ 1, and the recursionUn+1(y) = 2yUn(y)− Un−1(y).
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So,M is reversible if and only ifMk is, k 6= 0. Clearly, a reversing symmetry ofM
must be one ofMk, too, but also the converse holds here: ifG were a reversing symmetry
of Mk, but not ofM, the corresponding symmetry groups would be different—another
impossibility. �

To summarize:

Proposition 2. Hyperbolic elements cannot have anyk-symmetries fork > 1. If they have
det(M) = 1, they cannot have reversingk-symmetries either. If, however, det(M) = −1,
M can possess a true reversing 2-symmetry, but none of higher order.

3. Matrices in PGl(2,Z) and Nielsen trace maps

Let us now proceed to the second part of our paper, where we shift from the linear group
Gl(2,Z) to its projective counterpart,PGl(2,Z). This step is made by identifying a matrix
M with −M, i.e. we have

PGl(2,Z) ' Gl(2,Z)/{±1l}. (35)

This looks as if it makes life more complicated, but the opposite is the case. To distinguish
elements ofGl(2,Z) (i.e. matrices) from those ofPGl(2,Z) (pairs of matrices) we write
round brackets for the former and square brackets for the latter. We deal firstly (and easily)
with symmetries, and then move on to reversing symmetries.

3.0.1. Elements of finite order.The first observation here is that we can no longer have
elements of order 4 or 6 (since such elements fulfilM2 = −1l orM3 = −1l ), but remain only
with order 1, 2 or 3—just consider the results of the previous classification. We then notice
that all symmetry groups derived above shrink to half their size due to the identification of
M with −M. On the other hand, we now have to check whether the equationGM = −MG
has any solution (where then tr(GM) = 0), which is indeed the case for order 2, but not
for order 3. This means that we getC2×C2 again for elements of second order, butC3 for
third order.

3.0.2. Elements not of finite order.Consider first the case of parabolic matrices. Here, we
have essentially to check what happens with the matrix

M = T1 =
[

1 1
0 1

]
(36)

where it is easy to calculate that no new solutions appear, so that we find directly

S(M) ' Z. (37)

The same situation applies to hyperbolic elements, where no new solutions exist and
the centralizer ofM in PGl(2,Z) is the previous one shrunk by theC2-part.

3.0.3. Summary of symmetries.We can summarize this situation by the following theorem
previously given in [3, 30].
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Theorem 4. The symmetry groupS(M) ⊂ PGl(2,Z) for M ∈ PGl(2,Z) is:
(1) PGl(2,Z) if and only if M = [1l];
(2) C2× C2 if and only if M2 = [1l] 6= M;
(3) C3 if and only if M3 = [1l] 6= M;
(4) C∞ in all remaining cases, i.e. wheneverM is not of finite order.

Let us add a comment here. It is well known that every Abelian subgroup of the modular
groupPSl(2,Z) is cyclic, cf [29], which has a nice connection with part (2) of theorem 4.
There, the symmetry group isC2×C2 which is Abelian butnot cyclic. It turns out that its
intersection withPSl(2,Z) is C2 and hence cyclic as it must be. This way we see

Corollary 2. The possible Abelian subgroups ofPSl(2,Z) areC2, C3 andZ ' C∞.

This matches well with the fact thatPSl(2,Z) is isomorphic with the free product of
C2 andC3 [14, 21]

PSl(2,Z) = C2 ∗ C3 (38)

which will be helpful in what follows. Let us pause to explore this a little. Equation (38)
means that we can writeC2 ∗C3 as a quotient [21] of the free groupF2 of two generators,
v, q say, after the relationsR = {v2 = e, q3 = e} wheree is the neutral element (i.e. empty
word) in F2,

C2 ∗ C3 ' F2/R. (39)

This implies immediately that we have precisely one conjugacy class of involutions in
PSl(2,Z), represented byv, and precisely two classes of elements of order 3, namely those
represented byq andq2 = q−1 (they become conjugate only inPGl(2,Z)). This structure
will prove useful in a moment.

3.1. Reversing symmetries

First of all, the restriction encountered previously in theGl(2,Z) case does not apply here,
as we have to calculate always mod±1l. This means in particular that many orientation-
reversing matrices actually are reversible [3, 25, 26]. Let us state the result as follows.

Theorem 5. The reversing symmetry groupR(M) ⊂ PGl(2,Z) of M ∈ PGl(2,Z) is:
(1) C∞ if and only if M is not reversible;
(2) PGl(2,Z) if and only if M = [1l];
(3) D2 ' C2× C2 if and only if M2 = [1l] 6= M;
(4) D3 if and only if M3 = [1l] 6= M; or
(5) D∞, if M is reversible but not of finite order.

At this point, we know the complete answer for elliptic and parabolic elements (which
all are reversible), but still have to decide between possibilities (1) and (5) of theorem 5.
This requires a bit more algebra which we will now explain.

3.1.1. Reversibility and the word problem inPSl(2,Z). Let us describe how to decide
whether an infinite-order elementM ∈ PGl(2,Z) is reversible or not. We do this mainly
by converting the reversibility issue into a conjugacy problem within the groupPSl(2,Z)
of (38). This is advantageous because conjugacy of any two elements in a free product
is decidable via a finite algorithm (for a full discussion, see [14, 21]; also cf [23] for a
summary and another application of this property). Practically speaking, (38) means that
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any elementM of PSl(2,Z) can be written uniquely as a finite word inv, q and q−1,
namely

M ∈ PSl(2,Z)→ M = vαq±1vq±1 . . . vq±1vβ (40)

whereα, β ∈ {0, 1}, and the so-calledreducedrepresentation (40) is unique. The term
reducedrefers to the fact that the relationsR = {v2 = q3 = e} are used to ensure that
each consecutive element of the word alternatingly belongs to the subgroupC2 = 〈〈v〉〉 or
to C3 = 〈〈q〉〉, and is different from the unit element. For an explicit algorithm to find this
word, see the appendix in [14].

To make things explicit, we use the matrix representatives

v =
[

0 −1
1 0

]
and q =

[
0 1
−1 −1

]
. (41)

As an example, we have, for̀∈ Z,[
1 `

` 1+ `2

]
= (vq−1)`(vq)`. (42)

Note that` = 1 gives thePSl(2,Z) element corresponding to the cat map (1).
Two elements ofPSl(2,Z) are conjugate if and only if they have the samecyclically

reducedword. The latter is found by wrapping the word (40) on the circle with the first
and last letters adjacent, and then reducing if necessary to ensure adjacent letters are from
different subgroups. The process of finding the cyclically reduced word, or comparing
two such words up to cyclic permutation, in general involves moving parts of the original
word (40) from its beginning to its end orvice versa. This establishes the conjugating
element linking the two words. For example,qvq is conjugate tovq−1 because they share
the same cyclically reduced word. As a more pertinent example, observe[

1 `

` 1+ `2

]−1

= (q−1v)`(qv)` = q−1(vq−1)`−1(vq)`v = v(vq−1)`(vq)`v. (43)

Comparing (43) and (42), we find the words to be cyclic permutations of one another, hence
conjugate (byv). This shows that (42) is reversible inPSl(2,Z) with v as involutory
reversing symmetry.

It is not hard to see that the set of cyclically reduced words consists ofv, q, q−1,
together with certain mixed words. The latter can be taken, without loss of generality, to be
(vq)j or (vq−1)j , j ∈ N (whereN = {1, 2, 3, . . .}), or words containing at least one copy
of both vq andvq−1, i.e. of the form

(vq−1)j1(vq)k1 . . . (vq−1)jn(vq)kn n > 1, ji, ki ∈ N. (44)

Noting that

vq =
[

1 1
0 1

]
and vq−1 =

[
1 0
1 1

]
(45)

so that any product of them has trace exceeding 2, we see that anyM ∈ PSl(2,Z) which
is hyperbolic has a cyclically reduced word of the form (44) (and hence is conjugate to
such a word). We can encode this cyclically reduced word for hyperbolicM by the integer
sequence of powers of thevq andvq−1 blocks

{M}:= {−j1, k1, . . . ,−jn, kn} n > 1, ji, ki ∈ N. (46)

The sequence{M} is to be understood with periodic boundary conditions.
It follows from the other cyclically reduced words given above that we have the

following situation inPSl(2,Z): (i) there are infinitely many conjugacy classes of parabolic
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matrices, with representatives(vq)m and (vq−1)m, m ∈ N; (ii) there are two conjugacy
classes of order 3, with representativesq and q−1; and (iii) one conjugacy class of
involutions, represented byv. It is easy to see the reversibility withinPGl(2,Z) of the finite-
order and parabolic elements from their representatives. The involutionv is reversible with
itself as the reversing symmetry. The parabolic matrixvq has inverseq−1v. As these two
words have different cyclic reductions, they cannot be conjugate inPSl(2,Z). However,
we have

vq = s(q−1v)s (47)

where the involutions is given by

s:=
[−1 0

0 1

]
. (48)

Thus vq is reversible inPGl(2,Z), while irreversible inPSl(2,Z). A similar statement
is true of vq−1, and also of the powers of these elements. This follows because
vq−1 = sv(vq)sv from sandwiching (47) bysv and noting thats andv commute. That is,
vq andvq−1 are not conjugate inPSl(2,Z), while they are inPGl(2,Z) (and similarly for
the powers). Finally, we also know from above that, in contrast to the case ofPSl(2,Z),
there is only one conjugacy class of third-order elements inPGl(2,Z). Whenceq and
q−1 are conjugate (and reversible) inPGl(2,Z), as distinct fromPSl(2,Z). The reversing
symmetry is againsv.

It remains to consider the reversibility or irreversibility of a hyperbolic element
M ∈ PSl(2,Z). In what follows, we show that this can be decided via symmetry properties
of the sequence{M} of (46). We know already from lemma 7 that possible reversing
symmetries are involutions inPGl(2,Z). We consider firstly the case that the involution
is orientation-preserving (and so also inPSl(2,Z)), and then the case that it is orientation-
reversing (and thus inPGl(2,Z)\PSl(2,Z)).

Proposition 3. Let M =
[
a b

c d

]
be a hyperbolic element ofPSl(2,Z). ThenM is

reversible inPSl(2,Z), i.e.GMG−1 = M−1 with G ∈ PSl(2,Z), if and only if:
(1) G is conjugate tov of (41) in PSl(2,Z);
(2) b = c in M, or M is conjugate to such a matrix;
(3) the sequence{M} of (46) is invariant under reversal followed by a change of sign.

Proof. (1) follows from the fact that all involutions inPSl(2,Z) are conjugate tov. For
(2), a straightforward calculation shows thatvMv = M−1 implies b = c. If G = PvP−1

with P ∈ PSl(2,Z), thenM ′ = P−1MP has b′ = c′. For (3), it follows that since
M is conjugate to a word of the form (44), thenM−1 is conjugate to the inverse of
(44). The inverse of (44) is(q−1v)kn(qv)jn . . . (q−1v)k1(qv)j1, which is conjugate viav to
(vq−1)kn(vq)jn . . . (vq−1)k1(vq)j1. This shows that{M−1} = {−kn, jn, . . . ,−k1, j1}. From
the standard theory,M−1 andM are conjugate if and only if{M−1} = {M}. �

We next consider the case of an involutory reversing symmmetryG with det(G) = −1,
i.e.G ∈ PGl(2,Z)\PSl(2,Z). We can then writeG = sG′, with s the orientation-reversing
involution of (48) andG′ ∈ PSl(2,Z). We then have

GMG−1 = M−1⇔ sG′MG′−1s = M−1⇔ G′MG′−1 = sM−1s. (49)

Since sM−1s ∈ PSl(2,Z), this shows that reversibility with a reversing symmetry of
negative determinant can still be related to a conjugacy problem inPSl(2,Z). We find
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Proposition 4. Let M =
[
a b

c d

]
be a hyperbolic element ofPSl(2,Z). ThenM has a

reversing symmetryG ∈ (PGl(2,Z)\PSl(2,Z)), i.e.GMG−1 = M−1 with G = sG′ and
G′ ∈ PSl(2,Z), if and only if:

(1) G is conjugate to

[
1 0
0 −1

]
, or

[
0 1
1 0

]
; in PGl(2,Z);

(2) a = d, or b = −c (e.g.b|(d − a) or c|(d − a)); in M, or M is conjugate to such a
matrix;

(3) the sequence{M} of (46) is invariant under reversal.

Proof. For (1) and (2), we refer to lemma 4 and to [12, 25]. To show (3), we use the
fact thatM is reversible with reversing symmetry of negative determinant if and only
if its cyclically reduced word is reversible with such a reversing symmetry. Similar
to (49), the latter is true if and only if the word of the form (44) to whichM is
conjugate, denotedw(M), is conjugate inPSl(2,Z) to sw(M)−1s. Using (44), and
(47) to move ones through w(M)−1 and cancel it with the other, one deduces that
{sw(M)−1s} = {kn,−jn, . . . , k1,−j1}. This sequence equals that of{w(M)} = {M} of
(46) if and only if the latter is invariant under reversal. �

Let us now give some examples of how the previous propositions can be used to
decide reversibility of hyperbolic elements ofPSl(2,Z) in PGl(2,Z). This also decides
reversibility of corresponding hyperbolic elements ofSl(2,Z) in Gl(2,Z), since the
following is easily proved.

Proposition 5. Let M ∈ Sl(2,Z) with tr(M) 6= 0. ThenM has a reversing symmetry
G ∈ Gl(2,Z) if and only if [G][M][G]−1 = [M]−1, where [M], respectively [G], stand for
the corresponding elements ofPSl(2,Z), respectivelyPGl(2,Z).

There is only one thing to note when considering reversibility and working between
corresponding hyperbolic elements ofSl(2,Z) andPSl(2,Z). This is that the reversibility
described in proposition 3 via an orientation-preserving involution inPSl(2,Z), becomes
reversibility via an order 4 element inSl(2,Z).

Example 4. If we take n = 1 in (46) and the normal form (44), we observe that
(vq−1)j1(vq)k1 always has an orientation-reversing involutory reversing symmetry because
{−j1, k1} is equivalent to{k1,−j1} (cf proposition 4). On the other hand,(vq−1)j1(vq)k1

only has an orientation-preserving involutory reversing symmetry ifj1 = k1, because this
is needed for{−j1, k1} to equal{−k1, j1} (cf proposition 3). The element (42) is precisely
this example (cf also (43)).

Example 5. Once we taken = 2 in (46) and consider sequences{−j1, k1,−j2, k2}, we can
avoid both possibilities for reversibility inPGl(2,Z) as described in propositions 3 and 4.
This becomes increasingly easy with highern (e.g. a necessary condition for proposition 4
is that the subsequences ofji ’s andki ’s are each symmetric). Forn = 2, we have

(vq−1)j1(vq)k1(vq−1)j2(vq)k2 =
[

1+ k1j2 k1+ k2(1+ k1j2)

j2+ j1(1+ k1j2) 1+ j1k1+ j2k2+ j1k2(1+ k1j2)

]
.

The sequence{−j1, k1,−j2, k2} = {−1, 1,−3, 2} corresponds to a hyperbolic element of
PSl(2,Z) which is irreversible inPGl(2,Z). This provides the correspondingSl(2,Z)
element in example 2 of section 2.2.
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For hyperbolic elements ofPSl(2,Z) with small trace, the conditions (2) of propositions 3
and 4 are particularly useful. Firstly, the conjugacy representatives (44), together with
(45), show that every hyperbolic element ofPSl(2,Z) is conjugate to one with positive
integer entries (for a geometric, rather than algebraic, proof of this result, cf [20]).

Secondly, conjugacy by

[
0 1
1 0

]
can always be used to interchange the diagonal elements.

Consequently, it is not hard to write out the matrices

[
a b

c d

]
, with a, b, c, d ∈ N and

a > d, for small values ofa+ d and verify they satisfy the above-mentioned conditions (or
obvious transformed versions of them). Doing so, we find:

Example 6. All hyperbolic elements ofPSl(2,Z) with 36 tr(M) 6 19 are reversible.

We now complete the analysis of reversibility inPGl(2,Z) by considering the
reversibility of an elementM ∈ PGl(2,Z) with det(M) = −1. If tr(M) = 0, we
know M is an involution and is reversible. If tr(M) > 0, thenM is hyperbolic and so
is M2 ∈ PSl(2,Z). If M is reversible, we again know that its reversing symmetries
are involutions. Hence, from standard results [27],M can be written as the product
of two involutions. So, det(M) = −1 implies that one involution has negative and the
other positive determinant. Since a power of a reversible mapping certainly possesses any
reversing symmetry of the mapping itself, it follows thatM2 has an involutory reversing
symmetry with det= −1 and another one with det= 1, so satisfies the conditions of both
proposition 3 and proposition 4. Conversely, we can show for hyperbolicM ∈ PGl(2,Z)
with det(M) = −1, that whenM2 satisfies one of proposition 3 or proposition 4, it must
satisfy both andM is reversible. This uses:

Lemma 10. Let A, B ∈ PGl(2,Z) with det(A) = det(B) = −1 and tr(A), tr(B) 6= 0. If
A2 = B2 in PSl(2,Z), thenA = B.

Proof. From the Cayley–Hamilton theorem, we have

A2− tr(A) · A− 1l = B2− tr(B) · B − 1l = 0.

From the assumptions, this impliesA = γB where γ = tr(B)/tr(A). However, taking
traces of both sides ofA = γB showsγ 2 = 1, whenceA = B as we can ignore a possible
minus sign. �

It follows from lemma 10 thatM−2 = GM2G−1 = (GMG−1)2 impliesM−1 = GMG−1

for hyperbolicM ∈ PGl(2,Z) with det(M) = −1. In summary, we have shown

Proposition 6. Let M ∈ PGl(2,Z) with det(M) = −1 and tr(M) > 0. ThenM is
reversible inPGl(2,Z) if and only if the hyperbolic elementM2 ∈ PSl(2,Z) is reversible in
bothPSl(2,Z) andPGl(2,Z)\PSl(2,Z). M andM2 share the same reversing symmetries.
M is reversible if and only if the sequence{M2} is invariant underboth a change of sign
and reversal.

The canonical illustration of proposition 6 is the orientation-reversing hyperbolic element[
0 1
1 `

]
. Its square is thePSl(2,Z) element (42). Proposition 6 also shows that we cannot

have true reversing 2-symmetries inPGl(2,Z) (cf proposition 2).
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3.1.2. Alternative approach via quadratic forms.We finish this section with a short
description of a number-theoretic way of deciding reversibility inPGl(2,Z). Though this
does not give any essential new insight, it has the advantage that it allows for a generalization
to matrices of larger dimension.

It was shown in proposition 17 of [25] via direct calculation thatM =
[
a b

c d

]
∈

PGl(2,Z) has a reversing symmetry inPGl(2,Z) if and only if there existsα, β, γ ∈ Z
satisfying

(a − d)α + cβ + bγ = 0 (50)

together with

α2+ βγ = ±1. (51)

The corresponding reversing symmetryG reads

[
α β

γ −α
]

, with (51) being the determinant

condition.
Now the linear diophantine equation (50) always has an infinity of solutions for

(α, β, γ ) ∈ Z3, which can be found using standard number-theoretic methods. To describe
this, let us assumea 6= d (a = d is trivial) and c 6= 0 (this is no restriction asb = c = 0
is again trivial, andc = 0 but b 6= 0 would result in an analogous chain of arguments).
Then, we definer = gcd(a − d, b, c), ands = gcd(a − d, c). Clearly, r | s and we write
s = µr. Then,(a− d)/r, b/r andc/r as well as(a− d)/s andc/s are again integers and
the equation

a − d
s

α + c
s
β = 1 (52)

has integer solutions because gcd((a − d)/s, c/s) = 1. Let (α0, β0) be one such solution
(which then also fulfils gcd(α0, β0) = 1). The general solution of (50) can then be written
as follows:

α = b

r
`α0− c

s
k β = b

r
`β0+ a − d

s
k γ = −µ` (53)

where` andk are arbitrary integers.
It is now condition (51) that places a possible restriction on` andk. Substituting (53)

in (51) yields

P`2+Qk`+ Rk2 = ±1 (54)

where

P = α2
0
b2

r2
− µβ0

b

r
Q = −

(
a − d
r
+ 2α0

b

r

c

s

)
R = c2

s2
. (55)

The left-hand side of (54) is an integer binary quadratic form in` andk. In the language of
binary quadratic forms, (54) asks whether±1 can berepresentedby this form, i.e. whether
integers` andk satisfying (54) can be found. This is a solvable problem, using techniques
dating back to Gauß (cf [10] for an overview). Thus, in this description, reversibility is
equivalent to a representation problem by binary quadratic forms.

To decide the problem for a givenM, one uses the notion ofequivalentbinary quadratic
forms. Two forms are said to be equivalent if one is converted into the other via a unimodular
transformation. A numberN is represented by a formAx2 + Bxy + Cy2 if and only if
the given form is equivalent to one with leading coefficientN , i.e.NX2 + B ′XY + C ′Y 2

with (X, Y ) ∈ Z2 and (x, y) ∈ Z2 linked by an element ofGl(2,Z) (note that we arenot
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using the restricted form of equivalence with only orientation-preserving matrices here). An
algorithm for deciding equivalence of forms was derived by Gauß.

In our case (54)–(55), having solved the problem for elliptic and parabolic matrices by
other means, we are dealing withindefiniteforms because thediscriminant

D = Q2− 4PR = (tr(M)2− 4det(M))/r2 (56)

which follows by inserting (55) and observing the relationss = µr and (52), is clearly
positive for hyperbolicM. An indefinite form can always be transformed (via an algorithmic
use of afinite numberof unimodular transformations) to one of the so-calledreducedforms
[10]. There are also only finitely many of those, which divide into a numberh of cyclesof
equivalent reduced forms. Finally, two indefinite forms are equivalent if and only if they
reduce into thesamecycle. In this respect,h is theclass numberfor equivalence classes of
forms and is a function of the discriminantD. Of course, whenh(D) = 1, all forms with
that particular discriminant are equivalent. A conjecture due to Gauß (and still unproved, as
far as we are aware) is thath(D) = 1 occurs for infinitely many values of the discriminant
D. In our context, from (56), this would imply infinitely many values of tr(M) for which
all matrices with that trace are reversible—a rather unexpected outcome.

4. Extension to affine transformations

So far, we have mainly discussed linear transformations, but it is an interesting question
(e.g. cf lemma 1 for cat maps) what happens if one extends the search for (reversing)
symmetries to the group ofaffine transformations.

Let us start with the plane, where affine transformations can be written as(t,M) with
t ∈ R2 andM ∈ Gl(2,R). The action on a point of the plane is(t,M)x:= Mx + t and
the product reads

(t,M) · (t ′,M ′) = (t +Mt ′,MM ′). (57)

From this equation it is immediate that the affine transformations of the plane form a group
which is a semi-direct product

Ga = R2×sGl(2,R) (58)

with neutral element(0, 1l) and(t,M)−1 = (−M−1t,M−1). R2 is a normal subgroup ofGa
since

(t,M) · (s, 1l) · (t,M)−1 = (Ms, 1l) (59)

ands ′ = Ms is again a valid translation.

4.1. Toral automorphisms

Now, we are not primarily interested in the plane, but in the torusT defined through

T:= {(x, y)t |06 x, y < 1}. (60)

This is still an Abelian group if we define the addition of vectors now mod. 1 componentwise,
and the affine transformations ofT form the group

GTa = T×sGl(2,Z) (61)

which is still a semi-direct product.
If we now ask for an affine (reversing) symmetry of a matrixM (now being identified

with the element(0,M) ∈ GTa ) we find
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Lemma 11. The affine transformation(t,G) is a (reversing) symmetry of the toral
automorphism(0,M) if and only if G is a (reversing) symmetry ofM in Gl(2,Z) and
Mt = t (mod 1).

Proof. We have(t,G) · (0,M) = (t,GM) and (0,M±1) · (t,G) = (M±1t,M±1G). But
then the statement follows again from the uniqueness of factorization in semi-direct products.

�

From this it is clear that we need not consider all translations inT but only those with
rational components, which we denote as

3∞:= {(x, y)t ∈ T|x, y ∈ Q}. (62)

For many purposes, we can also consider discrete sublattices3q of 3∞ on T (q ∈ N):

3q :=
{(

m

q
,
n

q

)t
|06 m, n < q

}
. (63)

All these3q (including q = ∞) form Abelian groups with respect to addition mod 1,

3q ' Cq × Cq (64)

and all of them give rise to affine subgroups ofGTa that are semi-direct products

Gq = 3q ×sGl(2,Z) (65)

as can easily be checked from equation (59). Furthermore, we haveG1 ' Gl(2,Z) and
3∞ = ∪q>13q .

From the above lemma it is now clear that we can get (reversing)k-symmetries. In
fact, the equationMkt = t on the torus hasak = |det(Mk −1l)| different solutions provided
no eigenvalue ofMk is 1. Clearly,

ak =
∑
`|k
` · p` (66)

wherep` counts the true orbits of length̀, and the M̈obius inversion formula [13] gives

pk = 1

k

∑
`|k
µ(k/`) · a` (67)

with the Möbius functionµ(m) [13]. If pk is positive for somek, we get ak-symmetry (and,
hence, eventually a reversingk-symmetry) ofM. This can easily be calculated explicitly,
where a very natural tool is provided by the so-called dynamical or Artin–Mazurζ -functions
[8]. Here, theak ’s can be extracted from the series expansion of the logarithm of theζ -
function, while thepk ’s appear as exponents of the factors of the Euler product expansion
of the ζ -function itself.

On the other hand, suppose we restrict our search for (reversing)k-symmetries to a
particularGq of (65) arising from the lattice3q of (63) for definiteq. Then the existence
and distribution (ink) of (reversing)k-symmetries in this set is equivalent to the problem
of the existence and distribution of periodic orbits induced byM on 3q . Quite a bit of
work has been done on the latter problem for hyperbolicM whenq is prime [22, 11].
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4.2. The case ofPGl(2,Z).

It is an obvious question to ask what happens in thePGl(2,Z) case which could be
considered as quotienting with respect to±1l, i.e. PGl(2,Z) ' Gl(2,Z)/{±1l}. This is
then the group of linear transformations ofT/ ∼ where the equivalence relation

x ∼ y :⇔ y = −x (68)

preserves the linear structure. This allows the determination of the affine transformations
of T/ ∼ from those ofT. We have to determine the normalizer of the quotienting group
{±1l} ' C2 in GTa from which we obtainGT/∼a as a factor group

GT/∼a ' normGTa ({±1l})/({±1l}). (69)

Since (0, 1l ) is the neutral element inGTa , we actually have to determine all affine
transformations(t,M) of the torus that commute with(0,−1l) which gives the condition

t = −t (mod 1). (70)

This equation has precisely four solutions onT, namely the elements of32 (the so-called
2-division points). We can now calculate the factor group of equation (69) and get

GT/∼a ' 32×s PGl(2,Z) (71)

which is, since32 ' C2 × C2, isomorphic with the groupA of polynomial mappings that
preserve the Fricke–Vogt invariant (2)! In view of the relation ofPGl(2,Z) to Nielsen trace
maps and their affine extensions to other polynomial mappings which preserve the Fricke–
Vogt invariant, compare [25, 26], and in view of lemma 1, this provides an independent
derivation of the structure of the groupA to that of [31].

5. Concluding remarks

In this paper, we have discussed the symmetries and reversing symmetries of 2D unimodular
matrices. By means of algebraic and number theoretic techniques, it was possible to classify
the (reversing) symmetry groups of such matrices. We also described how to calculate the
(reversing) symmetries of a given matrix explicitly, and how to deal with the extension to
affine symmetries and to (reversing)k-symmetries. The integral 2×2 matrices thus provide
a nice example where the structure of symmetry and reversing symmetry can be exploited
completely, without approximative methods.

It is clear that this is somewhat exceptional, and mainly the consequence of the linear
structure—even if the answer in detail required various discrete methods. To some extent,
the analysis can be generalized toGl(n,Z), but with increasing complication from matrices
with characteristic polynomials that are reducible overZ. Still rather interesting will be
the case ofGl(3,Z) due to its relation to lattice symmetries in three dimensions and the
appearance of more complicated symmetry groups. We hope to report on this in more detail
soon.
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